II-A. DT LTI System Analysis: Impulse Response & Convolution

نویسنده

  • S. F. Hsieh
چکیده

k x[k]δ[n − k] : convolution of x[n] and δ[n] = · · · + x[−2]δ[n + 2] + x[−1]δ[n + 1] + x[0]δ[n] + x[1]δ[n − 1] + · · · : any sequence can be decomposed as a sum of scaled and shifted impulses. (a) Scale (by x[k]) and shift (from δ[n] to δ[n− k]) imply linearity and time-invariance, respectively. (b) Envision x[n] : {..., x[−1], x[0], x[1], ...} as a signal vector, and δ[n − k] : {..., 0, δ[n − k], 0, ...} is itself a signal vector, too. (c) The sifting property is used to prove the convolution thm of an LTI system. 2. Impulse response is the system’s response(output) to an impulse input: h[n] ≡ y[n]|when input x[n]=δ[n] δ[n] → LTI → h[n] [Ex] y[n] = 0.9y[n− 1]+ x[n]. The impulse response h[n] can be computed recursively from y[n] by setting x[n] = δ[n]. If the input is an impulse x[n] = δ[n] and y[−1] = 0(zero-state), then y[0] = x[0] = 1, y[1] = 0.9y[0] + 0 = 0.9, y[2] = 0.9y[1] = 0.92, y[3] = 0.93, . . .. Thus the impulse response is h[n] = 0.9u[n]. 3. [Convolution Sum Thm] The output of any LTI system is the discrete convolution of the input x[n] with the system’s impulse response h[n]:

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

II-B. CT LTI System Analysis: Impulse Response & Convolution

τ :−∞ x(τ)h(t− τ)dτ = x(t) = y(t) Note that i. Linearity justifies superposition principle; ii. Time-Invariance justifies the system’s response to δ(t − n∆τ) is h(t− n∆τ). iii. For time-varying systems, the system response to δ(t − n∆τ) becomes h(t, n∆τ), and y(t) = ∫ ∞ τ :−∞ x(τ)h(t, τ)dτ , where h(t, τ) is the system response at instant t to a unit impulse input located at τ . 3. [Convolution...

متن کامل

Continuous-Time: Review Session

In this session we want to review the basic concepts introduced in class for convolution in continuous-time. It has been proved that in order to determine the characteristics of a linear, time-invariant (LTI) system we need to know the impulse response of the system. When we apply an input x(t) to a system that has h(t) as its impulse response, we obtain an output y(t) (see Figure 1). One of th...

متن کامل

Lp distributions: analysis by impulse response and convolution

In this paper it is shown that every continuous LTI (linear time-invariant) system L defined either on L or on D Lp (1 6 p 6 ∞) admits an impulse response ∆ ∈ D Lp′ (1 6 p ′ 6 ∞, 1/p+ 1/p′ = 1). Schwartz’ extension to D Lp distributions of the usual notion of convolution product for L functions is used to prove that (apart some restrictions for p =∞) for every f either in L or in D Lp we have L...

متن کامل

Signal Processing Causal discrete-time system approximation of non-bandlimited continuous-time systems by means of discrete prolate spheroidal wave functions

In general, linear time-invariant (LTI) continuous-time (CT) systems can be implemented by means of LTI discrete-time (DT) systems, at least for a certain frequency band. If a causal CT system is not bandlimited, the equivalent DT system may has be to non-causal for perfectly implementing the CT system within a certain frequency band. This paper studies the question to which degree a causal DT ...

متن کامل

On the Approximation of Toeplitz Operators for Nonparametric $\mathcal{H}_\infty$-norm Estimation

Given a stable SISO LTI system $G$, we investigate the problem of estimating the $\mathcal{H}_\infty$-norm of $G$, denoted $||G||_\infty$, when $G$ is only accessible via noisy observations. Wahlberg et al. recently proposed a nonparametric algorithm based on the power method for estimating the top eigenvalue of a matrix. In particular, by applying a clever time-reversal trick, Wahlberg et al. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008